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Abstract

Many effective and innovative survival mechanisms used by
natural organisms rely on the capacity for phenotypic plastic-
ity; that is, the ability of a genotype to alter how it is expressed
based on the current environmental conditions. Understand-
ing the evolution of phenotypic plasticity is an important step
towards understanding the origins of many types of biolog-
ical complexity, as well as to meeting challenges in evolu-
tionary computation where dynamic solutions are required.
Here, we leverage the Avida Digital Evolution Platform to
experimentally explore the selective pressures and evolution-
ary pathways that lead to phenotypic plasticity. We present
evolved lineages wherein unconditional traits tend to evolve
first; next, imprecise forms of phenotypic plasticity often ap-
pear before optimal forms finally evolve. We visualize the
phenotypic states traversed by evolved lineages across envi-
ronments with differing rates of mutations and environmental
change. We see that under all conditions, populations can fail
to evolve phenotypic plasticity, instead relying on mutation-
based solutions.

Introduction

Phenotypic plasticity is the capacity for a genotype to ex-
press different phenotypes in response to different environ-
mental conditions (Ghalambor et al., 2010) and is ubiqui-
tous throughout nature. The capacity for phenotypic plas-
ticity is central to many complex traits and developmental
patterns found in nature and often serves as a key strategy
employed by organisms to respond to spatially and tempo-
rally variable environments (Bradshaw, |1965; Murren et al.,
2015). For example, Daphnia pulex use plasticity to dif-
ferentially invest in morphological defenses during develop-
ment, depending on the presence of predators in their lo-
cal environment (Black and Dodson, [1990). Genetically
homogeneous cells in a developing multicellular organism
leverage their capacity for phenotypic plasticity to coordi-
nate their expression patterns through environmental signals
(Schlichting, 2003). Thus, understanding the evolution of
plasticity is an important step toward a deeper understand-
ing of biological complexity.

Phenotypic plasticity also has practical applications in the
field of evolutionary computation where evolution by natu-
ral selection is harnessed to solve challenging computational

and engineering problems. In many realistic problem do-
mains, conditions are noisy or cyclically change. Plasticity
could enable solutions to dynamically respond to changing
problem conditions and be robust to noise. Both the bio-
logical and evolutionary computation domains motivate the
following questions: (1) Under what conditions does pheno-
typic plasticity evolve? And (2), what are the evolutionary
stepping stones for phenotypic plasticity?

Ghalambor et al. identify four conditions that are neces-
sary for phenotypic plasticity to evolve: (1) populations are
exposed to temporally or spatially varying environments, (2)
the environments are differentiable by reliable signals, (3)
different environments favor different phenotypes, and (4)
no single phenotype can exhibit high fitness across all en-
vironments (Ghalambor et al., 2010)). Theoretical and em-
pirical findings support that phenotypic plasticity can evolve
under these conditions in both natural and artificial systems
(Clune et al.,2007;|Goldsby et al.;, 2010, 2014; Hallsson and
Bjorklund, 20125 [Nolfi et al.,{1994).

In addition to exploring the conditions that facilitate the
evolutionary origin of phenotypic plasticity, it is also impor-
tant to explore the step-by-step process in which plasticity
actually evolves. What are the reoccurring themes as evo-
lution progresses toward more plastic strategies? Are there
genotypic or phenotypic patterns present in lineages leading
to phenotypically plastic organisms? These types of ques-
tions are especially difficult to address in laboratory sys-
tems due to the slow pace of natural evolution, imperfec-
tions in lineage tracking, and the difficulty of acquiring high-
resolution data on genotypes and phenotypes. As such, arti-
ficial life systems are the most effective way to observe and
analyze the process by which phenotypic plasticity evolves.

Here, we use the Avida Digital Evolution Platform (Ofria
et al.l [2009) to explore the process by which phenotypic
plasticity evolves in a fluctuating environment. We exper-
imentally address two questions related to the evolution of
phenotypic plasticity. First, do digital organisms evolve to
express traits unconditionally before evolving to condition-
ally express them as a function of their environment, and
do sub-optimal forms of plasticity evolve before more opti-



mal forms of plasticity? Second, how do mutation rate and
environmental fluctuation rate affect the evolution of phe-
notypic plasticity? We also examine alternative evolution-
ary strategies to phenotypic plasticity in fluctuating environ-
ments and see evidence for bet-hedging strategies that use
mutationally induced phenotype switching as a substitute for
sensory-dependent plasticity.

Methods
The Avida Digital Evolution Platform

The Avida software provides a computational instance of
evolution and enables researchers to experimentally test hy-
potheses about evolution that would otherwise be difficult
or impossible to test in natural systems (Ofria et al., [2009)).
Avida has been demonstrated to have a robust genetic en-
coding; all possible genetic sequences are well-defined in
any context (Ofria et al., 2009). Avida has also been shown
to be capable of evolving to use a wide range of capabil-
ities (Bryson and Ofria, 2013), making it an ideal choice
for studying phenotypic plasticity. Here, we provide a brief
overview of Avida as it is relevant to this work.

Digital Organisms Populations in Avida are made up of
self-replicating computer programs that compete for space
in a finite, toroidal grid. Each of these digital organisms is
defined by a sequence of instructions (i.e. its genotype), vir-
tual hardware to execute the instructions, and a position on
the grid. The instruction set of Avida is Turing-Complete
and enables organisms to perform basic computations, con-
trol their own execution flow, and replicate. An organism’s
virtual hardware (Figure [T)) includes components such as a
central processing unit (CPU), registers used for computa-
tion, input and output buffers, and memory stacks. Organ-
isms replicate asexually by copying themselves line-by-line
and dividing; however, an organism’s copy instruction is im-
perfect, which can result in mutated offspring.

Organisms can gain additional CPU cycles by perform-
ing tasks — such as mathematical computations — to im-
prove their metabolic rate. An organism’s metabolic rate
determines how rapidly it can execute its genome; a higher
metabolic rate allows an organism to replicate faster. Ini-
tially, an organism’s metabolic rate is roughly proportional
to its genome length; however, the organism’s metabolic rate
can be adjusted when the organism completes a task. In this
way, performance of tasks can be differentially rewarded or
punished. When an organism successfully replicates, its off-
spring is placed in a random location in the world, replac-
ing the organism formerly occupying that location. In this
way, becoming a more efficient replicator in Avida is ad-
vantageous in the competition for space. The combination
of competition for replication efficiency and heritable varia-
tion due to imperfect copying during the replication process
results in evolution by natural selection.

Sensing in Avida In a typical Avida run, organisms must
execute an instruction called IO to output the result of a com-
putation. That output is analyzed to determine if any tasks
have been performed, and if so, the organism is appropri-
ately rewarded or punished. However, in this default sce-
nario, organisms cannot sense the result, even after the task
has been performed. To provide organisms with a mecha-
nism to sense their environment, we added an 10-Sense in-
struction to the set of available instructiond!]

The IO-Sense instruction simulates IO and provides the
organism with feedback on what would have happened if
the organism had executed an IO instruction instead. This
separation of IO performance and sensing allows organisms
to determine whether or not a particular task is being pun-
ished without the risk of punishment, lowering the potential
cost of sensing. If an IO operation would have resulted in a
punishment, a -1 is added to the top of the organism’s stack
memorys; if it would have resulted in a reward, a 1 is placed
there. If an IO operation would have resulted in neither a re-
ward nor a punishment, a 0 is placed on the organism’s stack
memory. In this way, organisms are able to sense whether
or not a particular computational task is being rewarded or
punished in their current environment and are able to react
accordingly.

Identifying Phenotypic Plasticity in Avida We define a
phenotypically plastic organism in Avida as an organism that
leverages sensory information to alter the phenotype that
they express based on the environment they are in. We re-
strict the definition of an organism’s phenotype to the set of
unique tasks it performs in the target environment. We don’t
consider how many times an organism performs a task in a
given environment, but only whether the organism does the
task at all. Thus, to be phenotypically plastic, an organism
must express a different task profile — perform different tasks
— in different environments.

Experimental Design

To explore the evolutionary history of phenotypically plastic
organisms, we used an experimental design based on (Clune
et al., [2007).

Environments We constructed two experimental environ-
ments named ENV-NAND and ENV-NOT. In ENV-NAND,
organisms were rewarded for performing the NAND logi-
cal task but were punished for performing the NOT logical
task. Conversely, in ENV-NOT, organisms were rewarded
for performing the NOT logical task but were punished for

'TO-Sense is based on the IO-Feedback instruction imple-
mented in (Clune et al.| 2007), which worked exactly as the de-
fault IO instruction, but provided the organism with feedback on
the result. Thus, an organism must first do a particular task once —
and potentially get punished — to sense whether or not the task is
beneficial.
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Figure 1: A visual representation of the default virtual hardware used by organisms in Avida. Original figure from: (Ofria et al., |2009)

performing the NAND logical task. In each of our exper-
imental treatments, we cycled between these two environ-
mental conditions. In this way, genotypes with the capacity
to sense the current environment and express the appropriate
task had a competitive advantage over phenotypically non-
plastic organisms.

Phenotypes Given our simple definition of a phenotype,
there are only four possible phenotypes in each of the
two previously described environments: (1) perform only
NAND, (2) perform only NOT, (3) perform both NAND and
NOT, and (4) perform neither NAND nor NOT. When con-
sidering an organism’s phenotype across both ENV-NAND
and ENV-NOT, there are sixteen possible combinations. We
enumerate these phenotypes in Figure 2] Of these sixteen
possible phenotypes, only four express the identical task
profile in both environments; the other 12 all exhibit some
form of plasticity. The optimal form of plasticity is to per-
form only the NAND task in ENV-NAND and to perform
only the NOT task in ENV-NOT; any other form of plastic-
ity is sub-optimal. There are five possible phenotypes that
leverage plasticity to perform punished tasks instead of re-
warded tasks in a given environment; we did not expect these
forms of phenotypic plasticity to be successful.

Treatments Our experimental design consisted of five
treatments and a control: (1) a baseline treatment with
a moderate point-mutation rate and environmental-cycle
length, (2) a low-mutation-rate treatment, (3) a high-
mutation-rate treatment, (4) a short-environment-cycle-
length treatment, (5) a long-environment-cycle-length treat-
ment, and (6) a control where both NAND and NOT were
rewarded and the environment did not fluctuate. See Table[T]
for treatment details.

We created the baseline treatment to produce phenotyp-

Treatment Point-mutation Environment
Rate Cycle Length
Baseline 0.0075 100 updates
Low Mutation Rate 0.0025 100 updates
High Mutation Rate 0.0125 100 updates
Short Environment 0.0075 50 updates
Cycle Length
Long Environment 0.0075 200 updates
Cycle Length

Table 1: Differences among the five experimental treatments.
Point-mutation rate is given as mutations per instruction copied.
Environment cycle length describes the length of time (in updates)
an environment is active before toggling to the alternative environ-
ment.

ically plastic organisms for lineage analysis. We limited
the population size to 3600 organisms and seeded the world
with an ancestral genotype capable only of self-replication.
We then evolved populations for 100,000 update in Avida.
We imposed a 0.0075 probability of point-mutation per in-
struction copied, as well as a 0.05 probability for each of
single-instruction insertion and deletion per genome copied.
We fluctuated the current environment between ENV-NAND
and ENV-NOT every 100 updates in the baseline treatment.
We ran 50 replicates of each treatment, including the con-
trol.

2An update in Avida is an experimental length of time. One
update is defined as the amount of time it takes for the average
organism to execute 30 instructions (see (Ofria et al., 2009) for
more details).



Task Profile Color Type of
2 1 Y
# ENV-NAND ENV-NOT Code Plasticity
NAND NOT NAND NOT
1 - - - —
2 X - X -
Non-plasti
3 — X ~ X on-plastic
4 X X X X
5] - | - I - [ x
6 X - - Actively
7 X X — X Beneficial
8 X - X
9 X - - X Optimal
10 X X =
11 — _ X X Neutral
12 - X — —
LA - X - Activel
ctively
14 — X X X Harmful
15| X X X =
16| = X X -

Figure 2: Enumeration of all possible complete phenotypes. Each
row represents a distinct phenotype. A green ‘X’ indicates that the
associated task is performed in the specified environment, while a
red ‘=’ indicates that the task is not performed. For each environ-
ment, the column of the rewarded task is highlighted in green, and
the column of the punished task is highlighted in red. A green ‘X’
in a green column or a red ‘-’ in a red column is optimal. Each
phenotype has a color code, which is used in our visualization tool.
Note that the first four rows are non-plastic phenotypes, rows 5-8
exhibit partially beneficial plasticity, and row 9 is optimally bene-
ficial. Rows 10-11 are mostly neutral, while rows 12—-16 are detri-
mental forms of plasticity.

Lineage Visualization To explore evolutionary strategies
evolved in fluctuating environments, we visualized the lin-
eages of evolved genotypes as vertical bars where time (in
updates) proceeds from top to bottom beginning with the
lineage’s original ancestor genotype. Any given genotype
on the lineage must express one of the sixteen possible phe-
notypes enumerated in Figure 2] At each point in time,
the color of the visualized lineage corresponds to the color
representing the phenotype expressed by the lineage at that
point in time. For example, because the ancestral organ-
ism is capable only of self-replication, all visualized lin-
eages should show that the original ancestor’s phenotype
performed neither the NAND task nor the NOT task. In
addition to the visualized lineages, we indicate the actual
environmental conditions experienced by the evolving pop-
ulations at each point in time by the color of the vertical
axis. This type of visualization allows us to display the phe-
notypic states traversed by any given lineage, which allowed
us to explore evolutionary strategies leveraged by all evolved
lineages.

Results and Discussion

What conditions promote the evolution of
phenotypic plasticity?

Ghalambor et al. identified four environmentally-dependent
requirements for the evolution of phenotypic plasticity
(Ghalambor et al.| [2010), and our experimental design con-
forms to these conditions, enabling us to test their valid-
ity and relative importance. The oscillation between ENV-
NAND and ENV-NOT provides temporal variation. The 10-
Sense instruction reliably indicates the current environment.
The two environments favor opposing phenotypic traits, and
the only way for an individual organism to achieve a high
fitness in both is to alter its phenotypic expression. Given
the existing theoretical and empirical support for these con-
ditions, we expected to see the evolution of phenotypic plas-
ticity in each of our experimental treatments. However, we
were unsure of the impact of altering environmental factors
such as mutation rate and environment fluctuation rate.

At the end of the experiment, we extracted the dominant
(most abundant) genotype from the population of each repli-
cate. We tested these genotypes in both ENV-NAND and
ENV-NOT and recorded each genotype’s expressed pheno-
type across both environments. In Table [2] we report the
number of replicates in which the dominant genotype at the
end of the experiment was plastic and the number of repli-
cates in which the dominant genotype was optimally plas-
tic. Note that for these results we only evaluated the most
abundant genotype at the end of the experiment. An ances-
tor of the evaluated genotype may have been plastic, but if
that plasticity was not maintained in the lineage, we did not
count it in Table

As expected, the capacity for phenotypic plasticity
evolved in each experimental treatment; in 31 of the 50 base-
line treatment replicates, phenotypic plasticity was present
in the final dominant organism. None of the final domi-
nant genotypes from the control replicates were phenotyp-
ically plastic. In all control replicates, the dominant geno-
type performed both the NAND and NOT tasks uncondi-
tionally. Our results are consistent with existing theoreti-
cal and empirical work supporting the validity of the condi-
tions likely to facilitate the evolution of phenotypic plastic-
ity (Clune et al.,|2007;|Ghalambor et al., [2010j; Hallsson and
Bjorklund, 2012; [Nolfi et al.,{1994).

How do environmental factors impact the evolution
of phenotypic plasticity?

While our results show phenotypic plasticity can evolve un-
der the conditions identified in (Ghalambor et al., [2010),
how do mutation rate and fluctuation rate affect the evolution
of phenotypic plasticity under these conditions? We found
compelling results for both mutation rate and environmental
cycle length.



Treatment Plastic Replicates Unconditional Precedes Sub-optimal Precedes
Conditional Optimal
Total Optimal* NAND Task NOT Task
Baseline 31 (62%) 17 (34%) 31 (100%) 28 (90.3%) 16 (94.1%)
Low Mutation Rate 38 (76%) 30 (60%) 34 (89.5%) 35 (92.1%) 30 (100%)
High Mutation Rate 25 (50%) 11 (22%) 25 (100%) 24 (96%) 10 (90.9%)
Short Environment Cycle Length 36 (72%) 18 (36%) 33 (91.7%) 28 (77.8%) 18 (100%)
Long Environment Cycle Length 16 (32%) 10 (20%) 14 (87.5%) 16 (100%) 9 (90%)
Control 0 (0%) 0 (0%) - - -

*Optimal is defined as the complete phenotype that only performs the rewarded task in each environment.

Table 2: A summary of evolutionary outcomes across all five experimental treatments and control. Plastic Replicates indicates the number
of replicates (out of 50 per treatments) in which the final dominant genotype was plastic at all (Total) and perfectly plastic (Optimal).
Unconditional Precedes Conditional indicates the number of times the NAND task and NOT task were expressed unconditionally before
eventually evolving to be express conditionally (out of total plastic). Finally, Sub-optimal Precedes Optimal indicates how many runs had an
imperfect form of plasticity before eventually evolving to be optimally plastic (out of total optimally plastic).

Mutation Rate While only of borderline statistical signif-
icance (p = 0.058 using Fisher’s Exact Test with Bonfer-
roni corrections for multiple comparisons; all statistics were
done in R version 3.2.2 (R Core Teaml [2015)), our results
trend such that populations at lower mutation rates appear
more likely to evolve phenotypic plasticity than do popu-
lations at higher mutation rates. The most abundant geno-
types exhibited some plasticity in 38/50 runs at a low mu-
tation rate, 31/50 at the baseline mutation rate, and 25/50
and the high mutation rate. While higher mutation rates
increase genetic variation from one generation to the next,
most mutations that have phenotypic effects are deleterious
(Sniegowski et al., | 2000). Thus, at higher mutation rates, the
elevated influx of deleterious mutations could increase the
difficulty of maintaining the necessary genetic machinery
for phenotypic plasticity. Qualitative evidence for this effect
can be seen in the time-sliced visualized lineages of final
dominant, non-plastic genotypes from the high-mutation-
rate treatment (Figure [3) where lineages traverse states of
plasticity for some time before reverting back to states of
non-plasticity E} Furthermore, more phenotypic shifts in
general increase the probability of quickly finding an ap-
propriate non-plastic phenotype after each environmental
change.

Environment Fluctuation Rate We found a highly sig-
nificant difference (p = 0.00028 using Fisher’s Exact Test
with Bonferroni corrections for multiple comparisons) as we
varied the cycle length for environmental switching. Specifi-
cally, in the long-environment-cycle-length, only 16/50 runs
ended with a final dominant genotype that was phenotypi-

3For fully interactive visualizations of evolved lineages from
all treatments, see http://cse.msu.edu/~lalejini/
evo—origins—of—-phenotypic-plasticity—-web/
lineage_visualization.html

cally plastic, while the basline and short-environment-cycle-
length produced 31 and 36 plastic outcomes, respectively.

We expect that the short-environment-cycle-length treat-
ment is biased toward the evolution of phenotypic plastic-
ity because of the rapid environment fluctuations relative to
other experimental treatments. Rapid fluctuations cause lin-
eages to be less able to rely on mutational input for adapta-
tion. In the long-environment-cycle-length treatment, envi-
ronmental fluctuations may not be occurring rapidly enough
to produce a sufficient selective pressure for phenotypic
plasticity, allowing alternative adaptive strategies to evolve
instead.

What are the evolutionary stepping stones for
phenotypic plasticity?

In an attempt to identify patterns frequently encountered
during the evolution of phenotypically plastic organisms,
we extracted and analyzed the full lineages from our ex-
periments. We tested each ancestor genotype in both ENV-
NAND and ENV-NOT and classified their phenotype across
both environments. In addition to a quantitative analysis, we
also visualized the lineages of the dominant, plastic geno-
types; see Figure[d]for the visualization of the baseline treat-
ment. Using our visualizations and ancestor phenotype clas-
sifications, we addressed the following two questions: (1)
Do the lineages of phenotypically plastic organisms first
evolve to perform tasks unconditionally before evolving to
perform them conditionally as a function of their current en-
vironment? And (2), do imperfect forms of phenotypic plas-
ticity tend to precede optimal forms?

Unconditional Task Performance To explore whether or
not unconditional task performance was an evolutionary
stepping stone for conditional task performance (i.e. phe-
notypic plasticity), we determined whether a task was per-
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Figure 3: Time-sliced visualization of lineages for non-plastic,
dominant genotypes from the high-mutation-rate treatment. Quick
color reference: cyan represents unconditional NOT task perfor-
mance, dark blue represents unconditional NAND task perfor-
mance, and red/purple are sub-optimal forms of plasticity. Refer
to Figurefor a full legend of phenotype colors.

formed unconditionally prior to being performed condition-
ally by the ancestors of plastic genotypes. We analyzed both
tasks — NAND and NOT - separately. These results are re-
ported in Table[2]

Across all experimental treatments, non-plastic ancestors
generally preceded plastic ancestors. In other words, uncon-
ditional task performance of the NAND and NOT tasks gen-
erally preceded the conditional performance of either task.
Examples of this can be seen in time-sliced plastic lineages
from the baseline treatment (Figure [d) where many lineages
maintain states of unconditional task expression prior to en-
tering states of conditional task expression. These results
suggest that, in fluctuating environments similar to those in
our experiment, the evolutionary path to phenotypic plas-
ticity usually traverses states of unconditional trait expres-
sion prior to entering states of conditional trait expression.
This result should be unsurprising. In order to evolve a reg-
ulated function, the capacity for both the regulation and the
function must exist. In our experiment, the function can be
selected for without regulation; however, regulation of the
function is unlikely to be selected for without the prior ca-
pacity for the function.

Sub-optimal Phenotypic Plasticity To investigate sub-
optimal phenotypic plasticity as an evolutionary stepping
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Figure 4: Time-sliced lineage visualization of dominant, plas-
tic genotypes from the baseline treatment. Quick color reference:
cyan represents unconditional NOT task performance, dark blue
represents unconditional NAND task performance, different shades
of red/purple are sub-optimal forms of plasticity, and yellow rep-
resents optimal plasticity. Refer to Figure [2] for a full legend of
phenotype colors.

stone for optimal phenotypic plasticity in our experiment,
we analyzed lineages of optimally plastic genotypes. Again,
we consider only complete phenotypes that exclusively per-
form the rewarded task in each environment to be optimal.
For each optimally plastic genotype’s lineage, we deter-
mined whether or not the evolution of optimal plasticity was
preceded by the evolution of sub-optimal phenotypic plas-
ticity. The results of this analysis are reported in Table 2]

Across all experimental treatments, the evolution of sub-
optimal plasticity did, indeed, generally precede the evo-
Iution of optimal phenotypic plasticity. Examples of sub-
optimal plasticity preceding more optimal forms of plastic-
ity can be seen in some of the time-sliced lineages from the
baseline treatment visualized in Figure[d] These results sug-
gest that, in fluctuating environments similar to those in our
experiment, sub-optimal forms of phenotypic plasticity tend
to arise before the evolution of optimal forms of phenotypic
plasticity.

Unconditional trait expression tends to evolve first; then,
sub-optimal forms of plasticity appear before optimal forms
finally evolve. While challenging to verify, we expect our
results to be applicable to biological systems. The evolution
of complex functions (e.g. optimal phenotypic plasticity)
build on simpler, previously evolved functions (e.g. unreg-



ulated or sub-optimally regulated functions)
[2003). These results, however, are particularly useful for
applied evolutionary computation. If an evolved problem
solution must respond dynamically to environmental vari-
ables, it is likely that the solution will need to be able to
traverse through states of rigidity and sub-optimal plastic-
ity prior to reaching a state of optimal plasticity. Thus, first
evolving rigid solutions in fixed environments and then grad-
ually starting to fluctuate more aspects of the environment
over time could provide a scaffolding for the evolution of
optimally plastic solutions.

Are stochastic strategies evolving as an alternative
to phenotypic plasticity?

Stochastic phenotype switching — a form of bet hedging

(Segerl [1987) — is a common strategy leveraged by bacte-

ria in fluctuating environments (Rainey et al] 2011). Un-
like phenotypic plasticity where environmental conditions

alter gene expression, stochastic phenotype switching relies
on mutational input to induce phenotypic changes. This
strategy is thought to be a viable alternative to phenotypic
plasticity in the absence of reliable environmental signals
or when the processing of sensory information is costly
(Rainey et al.}[201T])). Strategic stochastic phenotype switch-
ing often relies on contingency loci — hypermutable regions
of the genome that can induce phenotype switching via mu-
tational input (Moxon et al.} [2006).

We hypothesized that stochastic phenotype switching was
an alternative evolutionary strategy to phenotypic plasticity
because of its commonality in bacteria. We most expected
to see stochastic phenotype switching in our experimental
treatments where the fewest number of replicates produced
phenotypically plastic final, dominant genotypes.

Lineage Visualization It can be difficult to intuitively un-
derstand evolutionary strategies leveraged by a lineage with-
out a visual aid. To explore evolutionary strategies alterna-
tive to phenotypic plasticity in fluctuating environments, we
visualized the lineages of dominant, non-plastic genotypes
from our experimental treatments.

If a lineage relied on stochastic phenotype switching,
we would expect it to switch between phenotypic states of
unconditional NAND task performance and unconditional
NOT task performance in approximate synchronization with
the changing environment. Specifically, we should see
ancestors along a lineage perform NAND unconditionally
during periods of ENV-NAND and see ancestors perform-
ing NOT unconditionally during periods of ENV-NOT. We
show a time-sliced lineage visualization of dominant, non-
plastic genotypes at the end of our experiment for the long-
environment-cycle-length treatment (Figure [5).

From Figure[5] we see what appear to be cases of stochas-
tic phenotype switching — lineages switching between phe-
notypic states of unconditional NAND task performance and
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Figure 5: Time-sliced lineage visualization of non-plastic, domi-
nant genotypes from the long environment cycle treatment. Quick
color reference: cyan represents unconditional NOT task perfor-
mance, dark blue represents unconditional NAND task perfor-
mance, and red/purple are sub-optimal forms of plasticity. Refer
to FigureElfor a full legend of phenotype colors.

unconditional NOT task performance in approximate syn-
chronization with the environment. Many of the lineages
in the long-environment-cycle treatment seem to be under-
going stochastic phenotype switching. A few examples of
what appear to be stochastic phenotype switching can even
be seen in Figure [] (the plastic lineages from our baseline
treatment) between updates 47,500 and 52,500 (the middle
time-slice), prompting the following open question: in ad-
dition to being an alternative strategy to plasticity in fluc-
tuating environments, could stochastic phenotype switching
also act as a precursor or building block toward plasticity?
Our visualizations only provide an exploratory method
for understanding evolutionary strategies employed by a lin-
eage. Further analysis would be required to confirm or re-
ject our hypothesis that stochastic phenotype switching is
evolving as an alternative strategy to phenotypic plasticity
in our system. This hypothesis is particularly worthwhile
to explore because our mutation rate was fixed across the
genome, preventing the evolution of contingency loci. Fur-
thermore, because sensing mechanisms were perfectly ac-
curate, phenotypic plasticity was a reliable strategy. We
hypothesize that genotypes are moving to a region of the
mutational landscape that straddles the boundary between
expressing unconditional NAND task performance and un-
conditional NOT task performance such that minimal mu-
tational input is required to switch phenotypes. This type



of evolutionary trajectory has been demonstrated by Crom-
bach and Hogeweg in evolutionary simulations of simple,
genome-encoded gene regulatory network models (Crom-
bach and Hogeweg, 2008)). In their simulations, Crombach
and Hogeweg found that networks evolved in an oscillat-
ing environment possessed genotype to phenotype mappings
that were mutationally more efficient at generating adaptive
phenotypes in alternative environments.

Conclusion

In this work, we evolved populations of phenotypically plas-
tic organisms at varied rates of environmental fluctuation
and mutation using the Avida Digital Evolution Platform.
We analyzed the lineages of evolved genotypes for clues
about the evolutionary stepping stones toward phenotypic
plasticity. We found that the capacity for phenotypic plastic-
ity evolved under conditions identified by previous research
(Clune et al., 2007 \Ghalambor et al., 2010). We found
evidence that traits are generally expressed unconditionally
prior to the evolution of conditional trait expression and that
sub-optimal forms of phenotypic plasticity generally evolve
before optimal forms of phenotypic plasticity. Both of these
results are examples of evolution’s use of simpler functions
as building blocks for more complex functions as in Lenski
et al. (Lenski et al., 2003)).

Visual inspection of the evolutionary histories leading to
phenotypically plastic organisms suggests that under certain
conditions stochastic phenotype switching evolves as an al-
ternative strategy to phenotypic plasticity, just as it does in
many bacteria (Moxon et al., 2006} |[Rainey et al., 2011). Of
course, in these bacterial cases, hypermutable sites tend to
appear in the genomes (called “contingency loci”) that facil-
itate such task switching.

Given these promising results, we plan to explore whether
stochastic phenotype switching can be a viable evolution-
ary strategy in the absence of the ability to evolve hyper-
mutable regions of the genome. Given the potential diffi-
culty in maintaining the necessary genetic machinery asso-
ciated with phenotypic plasticity, are there cases in which
stochastic phenotype switching is more robust than pheno-
typic plasticity? And, does this contribute to the evolution
of stochastic phenotype switching as an evolutionary strat-
egy? Metrics are clearly needed for quantifying stochastic
phenotype switching in digital systems and for evaluating
the mutational landscapes of genotypes along a lineage.
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