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Abstract

Gene duplications have been shown to promote evolvabil-
ity in biology and in computational systems. We use digi-
tal evolution to explore why; that is, what characteristics of
gene duplications increase evolutionary potential? Are du-
plications valuable because they inflate the effective muta-
tion rate, generating increased amounts of genetic variation?
Or is it that those mutations are clustered together? Or, is
it that the mutations insert genetic material, providing evolu-
tion an easy technique to select for longer genomes? Does
the value pertain to the information being duplicated in the
genome? If so, is the full structure of duplicated code criti-
cal, or would the duplication of functional building blocks be
valuable even if rearranged? Using the Avida Digital Evolu-
tion Platform, we experimentally tease apart these aspects in
two qualitatively different environments: one where complex
computational traits are directly selected, and another where
those traits need to be regulated based on current environmen-
tal conditions. We confirm that gene duplications promote
evolvability in both static and changing environments. Fur-
thermore, we find that the primary value of gene duplications
comes from their capacity to duplicate existing genetic in-
formation within a genome. Specifically, while duplications
that randomize the order of genetic material are valuable, the
most useful form of duplication also preserve the structure
(and thus information content) of duplicated sequences.

Introduction

Gene duplication is a phenomenon by which additional
copies of a region of genetic material are incorporated into
a genome. There are numerous processes that can result in
gene duplication, each with their own specific outcomes (as
reviewed in (Zhang, 2003)), ranging from repeats of gene
fragments to whole genome duplication. All of these pro-
cesses result in an increase in genome size, but more im-
portantly, genetic material that is likely more structured and
meaningful than random insertions. As such, gene duplica-
tion is an important mechanism for generating genetic nov-
elty, providing a source of new genetic material for evolu-
tionary processes to act on and enabling new evolutionary
opportunities (Zhang, 2003; Crow and Wagner, 2006; Mag-
adum et al., 2013). Indeed, gene duplication has been shown
to promote evolvability — the capacity of a system to gener-

ate adaptive phenotypic variation and to transmit that infor-
mation via an evolutionary process (Hu and Banzhaf, 2010)
— both in biology and in computational evolution.

Gene duplications have been shown to enhance evolv-
ability in a number of biological systems. A striking ex-
ample comes from the Long-Term Evolution Experiment in
Escherichia coli, where a duplication in one population al-
lowed a protein to be expressed in an environment where it
would normally be inhibited (Blount et al., 2012). By ex-
pressing this protein in a different context, the cell gained
access to a resource that it previously could not metabolize
resulting in a 7-fold increase in population size. Beyond spe-
cific cases of how a gene duplication led to increased evolv-
ability, large scale genomic studies have discovered cases
where a strikingly high fraction of the genes in an organ-
ism show evidence of having arisen from gene duplications
(Teichmann et al., 1998; Teichmann and Babu, 2004), em-
phasizing the role of duplication in evolutionary innovation.
Comparative studies further suggest that many ancient dupli-
cation events were associated with increases in both genetic
robustness and evolutionary innovation (reviewed in (Wag-
ner, 2008)). Though comparative studies lack the definitive
proof of laboratory manipulation, the accumulated weight of
evidence clearly suggests that gene and genome duplication
events can have long-term evolutionary consequences.

The prominence of gene duplications in biological evolu-
tion has inspired their use in artificial evolutionary systems.
In genetic programming, the optimal program architecture
for solving a particular problem is challenging to predict
a priori. Inspired by Ohno’s Evolution by Gene Duplica-
tion (Ohno, 1970), Koza used gene duplication and deletion
operators to co-evolve genetic programs and their structure,
finding that gene duplication and deletion increased program
evolvability and produced simpler solutions (Koza, 1995).
Calabretta et al. evolved modular neural network motor con-
trollers for robots with and without module duplication op-
erators, finding evidence that access to duplication opera-
tions resulted in increased functional specialization in net-
work modules (Calabretta et al., 1998, 2000). These and
other computational studies (Ryan et al., 1998; Sawai and
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Adachi, 1999, 2000; Schmitt, 2005) corroborate some of the
benefits of gene duplication seen in natural systems.

Given the evidence that gene duplication promotes evolv-
ability in both computational and natural systems, we use
a digital evolution approach to explore why. That is, what
aspects of gene duplications promote evolvability?

Is the full structure of duplicated code critical, or would
the duplication of the functional elements be valuable even
if they are rearranged? Exact duplications can result in
functionally redundant genes that can increase the muta-
tional robustness of a genotype (Crow and Wagner, 2006)
or allow the organism to produce additional gene product
(Zhang, 2003). If a highly constrained genetic sequence
is duplicated, one of the versions can mutate more freely,
which may lead to new functionality (Zhang, 2003; Wagner
et al., 2003) — a process known as neofunctionalization. Al-
ternatively, subfunctionalization may occur where the two
‘daughter’ genes diverge from the ancestral gene state, spe-
cializing on different aspects of the ancestral gene’s func-
tionality (Zhang, 2003). Gene duplications are also thought
to play an important role in the evolution of complex genetic
regulation (Teichmann and Babu, 2004). If a regulatory gene
is duplicated, the copy could continue to regulate the same
target genes, but mutations may cause it to respond to new
signals; or, the duplicated regulatory gene may continue to
respond to the same signals, but it may begin regulating a
different gene (Teichmann and Babu, 2004).

Aside from creating redundant copies of existing genetic
code in a genome, there are other features of gene dupli-
cation that may result in increased evolvability. Are gene
duplications valuable because they inflate the effective mu-
tation rate of genomes, increasing genetic variation? Or is
the important factor that those new mutations are clustered
together? Or is it that the mutations are insertions that pro-
vide evolution with an easy technique to select for longer
genomes and increased information storage capacity? These
aspects are nearly impossible to disentangle in biological
systems, but can be addressed in computational ones.

Using the Avida Digital Evolution Platform, we imple-
mented a series of mutation operators to systematically iso-
late aspects of gene duplication and tease apart which factors
promote evolvability. We tested these operators in two con-
texts: in a static environment that rewards the performance
of nine basic Boolean logic operations, and in two dynamic
environmental conditions that require the evolution of regu-
latory mechanisms capable of altering which operations are
expressed as a function of current environmental conditions.
There are several mechanisms that produce gene duplica-
tions in biological systems. Here, we use gene duplication
mutation operators in Avida that resemble replication slip-
page (Bzymek and Lovett, 2001) (slip mutations) and allow
for gene duplications or deletions at any scale.

We introduce five slip mutation operators to tease apart
the specific components of a gene duplication. By observing
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how each of our slip mutation operators affect the evolution
of digital organisms in different contexts, we are able to iso-
late which aspects of gene duplications are most important
for promoting evolvability.

Methods
The Avida Digital Evolution Platform

We conducted all experiments with Avida, which provides
a computational instance of evolution where researchers can
empirically test hypotheses that would be difficult or impos-
sible to test in natural systems (Ofria et al., 2009).
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Figure 1: A visual representation of an organism’s virtual hard-
ware in Avida. The original figure is from (Ofria et al., 2009).

Digital Organisms in Avida are self-replicating computer
programs that compete for space in a finite world. Each or-
ganism is defined by a linear sequence of program instruc-
tions (i.e. its genotype) and a set of virtual hardware. The
instruction set in Avida is Turing Complete and syntactically
robust — any ordering of instructions is syntactically valid,
though not always useful. The instruction set includes op-
erations for basic computations, execution flow control, in-
put and output, and self-replication. Additionally, we incor-
porate sensory instructions into the instruction set, enabling
organisms to sense the state of their current environment.
An organism’s virtual hardware (depicted in Figure 1) con-
sists of components such as a central processing unit (CPU),
registers for computation, buffers for input and output, and
memory stacks.

Organisms in Avida replicate asexually by allocat-
ing memory for their offspring, copying their genome
instruction-by-instruction, and then dividing. However,
copy and divide operations are not perfect and can result
in mutated offspring. Organisms can influence their replica-
tion speed by improving their metabolic rate. An organism’s
metabolic rate determines the speed at which it executes
instructions in its genome; a higher metabolic rate allows
an organism to execute its genome faster, and thus, allows
the organism to copy itself faster. Initially, an organism’s
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metabolic rate is roughly proportional to its length. How-
ever, an organism’s metabolic rate can be adjusted when an
organism completes a particular task, such as a mathemati-
cal computation. In this way, we can differentially reward or
punish the performance of different computational tasks.
When an organism finishes replicating, its offspring is
placed in a random location anywhere in the population,
replacing that location’s previous occupant. Thus, improv-
ing the efficiency of self-replication or performing rewarded
computational tasks are both advantageous in the competi-
tion for space in Avida. The combination of competition and
heritable variation due to imperfect copy and divide opera-
tions results in evolution by natural selection in Avida.

Mutation events in Avida come in four types (substitution,
insertion, deletion, or slip) and can be set to occur when
an instruction is copied or when an offspring is being born.
All mutation rates are independently configurable for any
combination of type and timing.

Copy mutations occur when a copy instruction errs. If it
is a substitution error, a random instruction is written to the
copy location instead of the intended instruction. If it is an
insertion, arandom extra instruction is copied along with the
intended instruction. If it is a deletion, the copy instruction
fails to write any instruction at all.

Divide mutations act on an organism’s offspring during
division. When a divide insertion mutation occurs, a random
instruction is inserted into the offspring’s genome at a ran-
dom position, increasing the size of the offspring’s genome
by one. When a divide deletion mutation occurs, a random
instruction in the offspring’s genome is removed, decreasing
the size of the offspring’s genome by one.

A new type of divide mutations are Slip mutations, which
enable gene duplications and deletions. When a slip muta-
tion occurs, two sites in the offspring genome are randomly
selected, defining the target segment for the operation. If
the first site is upstream of the second, the slip mutation re-
sults in an insertion; this is as if the organism’s replication
machinery had slipped backward during replication and re-
copied a segment. If the second site is upstream of the first,
the slip mutation results in a deletion; this is as if the organ-
ism’s replication machinery slipped forward during replica-
tion, skipping over a genetic segment. Our slip mutation
operators ensure that insertions and deletions due to slip mu-
tations occur with equal probability; thus, absent selection,
we do not create an inherent bias on genome length.

We use five variants of slip mutations: slip-duplicate, slip-
scramble, slip-random, slip-NOP, and slip-scatter. When a
slip mutation results in a deletion, in all but the slip-scatter
variant, the target segment is deleted. Rather than deleting
the target segment, the slip-scatter mutation operator dis-
tributes a number of single-instruction deletions equal to
the length of the target segment uniformly throughout the
genome. When a slip mutation results in an insertion, a num-
ber of instructions equal to the length of the target segment is
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inserted into the genome; however, depending on the partic-
ular slip mutation operator, which instructions are inserted
and where the insertions take place may be different. Fig-
ure 2 provides description and examples of how each slip
mutation operator handles insertions.

Sensing in Avida In Avida, organisms can use regulatory
mechanisms that alter which operations are expressed as
a function of environmental conditions. Such (phenotypic
plasticity) has been shown to evolve in a temporally chang-
ing environment (Clune et al., 2007; Lalejini and Offia,
2016). In our changing environment experiments, we in-
clude sensory instructions that, when executed, provide in-
formation about the current environmental conditions. Us-
ing a combination of these task-specific sensors, an organ-
ism can fully resolve the current state of its environment.

Experimental Design

To investigate how gene duplication affects evolvability, we
evolved populations in three different environments: a static
environment, a simple changing environment, and a com-
plex changing environment.

In the static environment, we rewarded the performance
of nine Boolean logic functions: NOT, NAND, OR-NOT,
AND, OR, AND-NOT, NOR, XOR, and EQUALS (for more
information on these functions in Avida see (Lenski et al.,
2003)). Rewards for these functions were identical and con-
sistent for the duration of the experiment.

To analyze an organism evolved in the static environment,
we evaluated the number of unique computational tasks it
could perform, resulting in a phenotypic match score that
indicates how well the organism is adapted to the static envi-
ronment. Phenotypic match scores in the static environment
range from a minimum of 0 (i.e. the organism performs no
tasks) to a maximum of 9 (i.e. the organism performs all 9
tasks). Equation 1 describes the static match score (Scores),
where P is a phenotype and P; represents the set of tasks
phenotype P performs in the static environment.

Scores(P) = | Ps| (D

In the simple changing environment, we considered the
performance of only four boolean logic tasks: NOT, NAND,
OR-NOT, and AND-NOT. At any given time each of these
tasks was either rewarded or punished. Thus, there were a
total of 16 possible environmental conditions. Starting at the
beginning of the experiment and every 50 updates' there-
after, the environment changed to a random one of the 16
possible conditions. These environmental fluctuations cre-
ated a selective pressure for organisms to use sensory in-
structions to regulate which tasks they perform (i.e. pheno-
typic plasticity) to match the current condition. We chose an

'An update in Avida is equal to the amount of time it takes for
the average organism to execute 30 instructions; see (Ofria et al.,
2009) for further detail.
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Figure 2: Descriptions and visual examples of how each of our slip mutation operator handles insertions. A) Slip-duplicate: The inserted
segment is an exact duplicate of the target segment and is inserted directly after the target segment. B) Slip-scramble: The inserted segment
is a shuffled duplicate of the target segment and is inserted directly after the target segment. C) Slip-random: The inserted segment consists
of random instructions and is inserted directly after the target segment. D) Slip-NOP: The inserted segment consists of nop-X instructions (a
no operation instruction in Avida) and is inserted directly after the target segment. E) Slip-scatter: The inserted segment consists of random
instructions and is broken up and inserted into random locations in the genome. F) For comparison, we include an example with no mutation.

environmental change rate of once per 50 updates because
previous work has shown that it facilitates the evolution of
phenotypic plasticity (Lalejini and Ofria, 2016).

The complex changing environment was identical to the
simple changing environment, except instead of considering
only four boolean logic tasks, we considered nine: NOT,
NAND, OR-NOT, AND, OR, AND-NOT, NOR, XOR, and
EQUALS. Thus, there were a total of 512 possible environ-
mental conditions, making it significantly more challenging
than the simple changing environment.

To analyze an organism that evolved in a changing envi-
ronment, we computed a phenotypic match score that indi-
cates how well the organism can cope with all possible envi-
ronmental conditions. Across each environmental condition
(16 in the simple changing environment, 512 in the complex
changing environment) and for each task we increased an
organism’s score by one if the task execution matched the
condition (i.e. performed a rewarded task, or avoided a pun-
ished task), and we decreased an organism’s score by one

if the task execution did not match the condition (i.e. per-
formed a punished task or did not perform a rewarded task).
We describe phenotypic match scores for a changing envi-
ronment, Score., in Equation 2 where P is a phenotype, E
is the set of all environmental conditions, P, is the set of
tasks phenotype P performs in environmental condition e,
- P, is the set of tasks phenotype P does not perform in en-
vironmental condition e, R, is the set of tasks rewarded in
environmental condition e, and =R, is the set of tasks pun-
ished in environmental condition e. Given this method of
scoring, any non-plastic organisms always receive a pheno-
typic match score of 0. In the simple changing environment,
scores range from a minimum of -64 (i.e. perfectly mal-
adaptive plasticity) to a maximum of 64 (optimally adaptive
plasticity), and in the complex changing environment, scores
range from -4608 to +4608.

Scoreo(P) = Y F|R. N P.| + |~R, N =P.| — |[R, N =P.| — |-R. N P,

(@)
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Treatments Each of our three experiments consisted of
seven treatments: one baseline treatment and six experimen-
tal treatments. Treatments differed only in the available mu-
tation operators and the rates at which those operators were
applied. Each treatment was designed to tease apart why
gene duplications promote evolvability. Table 1 provides
details about each treatment, and these details were shared
across all three experiments.

The baseline treatment was used as a control; we used
the results from this treatment as a baseline for evolvability
with which we compared the results from all other experi-
mental treatments. Mutation rates in the baseline treatment
have been shown to facilitate both the evolution of complex
boolean logic tasks, such as EQUALS, and the evolution of
task regulation in Avida (Lenski et al., 2003; Lalejini and
Ofria, 2016)

The slip-duplicate treatment allowed for mutation
events that resulted in full code duplications via the slip-
duplicate mutation operator. Duplications in this treatment
preserved both the content and the structure of duplicated
code. This allowed us to answer the following question: how
important is it that gene duplications can exactly duplicate
sequences in a genome in both content and structure?

The slip-scramble treatment allowed for mutation
events (via the slip-scramble operator) that resulted in code
duplications where the content of the duplicated code was
preserved, but the structure of the duplicated code was not
preserved. This, when compared with the slip-duplicate
treatment, allowed us to answer the following question: is
it that the duplication of particular instructions is important,
regardless of their arrangement?

The slip-random treatment allowed us to answer the fol-
lowing question: is it the case that gene duplications pro-
mote evolvability because they result in the insertion of
large, clustered mutations, regardless of what those muta-
tions may be? The slip-random treatment (via the slip-
random mutation operator) allowed for mutation events that
could insert large, contiguous clusters of random instruc-
tions; one could also think of these mutations as maximally
noisy duplications where neither the content or structure of
the duplicated code is preserved.

The slip-NOP treatment allowed for mutations capable
of inserting contiguous segments of blank ‘genetic tape’ (via
the slip-NOP mutation operator) in the form of no operation
instructions. This allowed us to answer the following ques-
tion: how important is it that gene duplications provide evo-
lution with an easy technique for increasing genome size?

The slip-scatter treatment helped us to tease apart
whether or not gene duplications promote evolvability be-
cause they inflate the effective mutation rate, generating in-
creased amounts of genetic variation. This treatment al-
lowed for mutations that, when triggered, could insert many
random instructions into random locations in a genome (via
the slip-scatter mutation operator).
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The high mutation rate treatment served a similar pur-
pose to the slip-scatter treatment. However, instead of sin-
gle mutation events (slip-scatter mutations) causing the in-
sertion of many random instructions, we elevated the rates
at which the copy instruction makes a random insertion or
random deletion to result in approximately the same number
of mutations per divide as in any treatment that includes a
slip mutation operator. This allowed us to evaluate the im-
portance of having an increased mutation rate due to large-
scale, single-event mutations versus having a higher copy
mutation rate.

In all experiments, organisms were limited to a minimum
genome size (i.e. instruction sequence length) of 100>. We
limited the population size to 3600 and seeded each ex-
periment with an ancestral genotype capable only of self-
replication. In both the static environment and simple chang-
ing environments, populations evolved for 200000 updates.
In the complex changing environment, populations evolved
for 400000 updates. We ran 100 trials of each treatment in
each of our three environments.

Statistical Methods

In each of three environments (static environment, simple
changing environment, complex changing environment), we
performed experiments with six experimental treatments to
be compared against a control. To determine if any of
the treatments was significant within a set, we performed
a Kruskal-Wallis test, applying a Bonferroni correction for
the three different environments to keep the experiment-wise
o = 0.05. For an environment in which the Kruskal-Wallis
test was significant, we performed Mann-Whitney U tests
for each experimental treatment against the control, and ap-
plied a Bonferroni correction for the six such tests within
each environment. All statistical analysis was conducted in
R 3.2.3 (R Core Team, 2015).

Digital Organism Evaluation At the end of each trial, we
extracted the final dominant (most abundant) genotype in the
population, and we traced back that genotype’s full ancestral
lineage. We calculated the phenotypic match score for each
final dominant organism and all of their ancestors. In both
the simple and complex changing environments, however,
the final dominant organism at the end of a trial was biased
by the final environmental condition. The final dominant
organism may have been well-adapted and abundant in the
final environmental conditions, but it may not have been ca-
pable of surviving if the environmental conditions were al-
lowed to change again. To avoid any edge effects associated

In exploratory experiments, we found that, without enforcing
a minimum genome size, slip mutations caused many lineages to
quickly shrink in genome size because of inherent selection pres-
sure for smaller genome size. Organisms became fast replicators
but were then trapped on a local fitness optima, unable to evolve to
perform complex computational tasks.
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Slip Mutation Substitution rate Insertion Insertion and
Treatment and deletion rate | deletion rate
Rate per copy . .
o per copy per divide
Operator per divide

Baseline 0.0025
Slip-duplicate 0.0025
Slip-scramble 0.0025
Slip-random Slip-random 0.0025
Slip-NOP Slip-NOP 0.0025
Slip-scatter 0.0025
High mutation rate 0.0025

Table 1: Differences in mutation operators and rates among the seven treatments.

with this bias, instead of comparing final dominant organ-
isms in the simple and complex changing environments, we
compared the ancestors of these final dominant organisms
that existed 1000 updates prior to the end of the experiment.

Results and Discussion
Does gene duplication promote evolvability?

We found that gene duplication promotes evolvability in
all three environments. As shown in Figure 3, organ-
isms evolved in the slip-duplicate treatment had significantly
higher phenotypic match scores than organisms evolved in
the baseline treatment across the static, simple changing and
complex changing environments (two-tailed Mann-Whitney
U tests, W = 562.5, 2702.5, 1540 respectively, Bonferroni-
adjusted p values all << 0.0001). This result suggests that
the slip-duplicate operator promotes the evolution of com-
plexity both in static environments that require the evolu-
tion of unconditional task performance (Boolean logic op-
erations), and in dynamic environmental conditions that re-
quire the evolution of regulatory mechanisms that alter ex-
pression based on current environmental conditions. These
results, as expected, support the existing literature on the ca-
pacity of gene duplications to promote evolvability (Koza,
1995; Zhang, 2003; Teichmann and Babu, 2004).

What aspects of gene duplication promote
evolvability?

Across all three environments we found that the most im-
portant aspect of gene duplications is the capacity to dupli-
cate meaningful information in the genome. As shown in
Figure 3, only organisms that evolved in the slip-duplicate
and slip-scramble treatments had significantly higher phe-
notypic match scores than organisms evolved in the base-
line treatment. Organisms evolved in all other experimental
treatments were either not significantly different from the
baseline treatment or significantly worse than the baseline
treatment.

Of the five types of slip mutation operators used (see
Figure 2), only the slip-duplicate and slip-scramble oper-

ators were capable of duplicating meaningful information
in a genome. Slip-scramble mutations maintain the con-
tent but not the ordering of duplicated instruction sequences;
thus, they can duplicate information about what instruc-
tions make-up already successful genetic sequences but do
not maintain the particular ordering of those instructions.
Slip-duplicate mutations are the full form of gene duplica-
tion, able to exactly duplicate the ordered instruction make-
up of existing genetic sequences. In contrast to the slip-
scramble and slip-duplicate operators, all other slip mutation
operators do not duplicate information about instruction se-
quences already present in the genome.

Because the slip-scramble treatment was significantly bet-
ter at promoting evolvability than the baseline treatment,
we can conclude that the duplication of functional building
blocks is valuable no matter how they are arranged when
duplicated. However, is it important to preserve both the
contents and ordering of duplicated sequences?

Is more information better? From Figure 3, organisms
evolved in the slip-duplicate treatment had higher pheno-
typic match scores than organisms evolved in the slip-
scramble treatment, implying that the additional informa-
tion in a gene duplication event does promote evolvability.
To confirm this relationship and reduce multiple compar-
ison issues with statistical tests, we re-ran 100 new trials
of both the slip-duplicate and slip-scramble treatments and
compared the phenotypic match scores of the evolved or-
ganisms. In all three environments, organisms that evolved
in the slip-duplicate treatment had significantly higher phe-
notypic match scores than organisms evolved in the slip-
scramble treatment (two-tailed Mann-Whitney U tests, W
= 4305, 4028.5, 3621.5 respectively, Bonferroni-adjusted p
values 0.0109, 0.0222, 0.0017, respectively). This result
supports that duplicating both the content and structure of
existing genetic code is an important factor in their ability to
promote evolvability.
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Figure 3: Experimental results from all three environments: A)
static environment, B) simple changing environment, and C) com-
plex changing environment. The violin plots for each environment
indicate the phenotypic match scores for final dominants in the
static environment and for the ancestors of final dominants that
existed 1000 updates prior to the end of a trial in the simple and
complex changing environments. Each time series shows the phe-
notypic match scores for the lineages of final dominant organisms
over time. The colors in each time series correspond to the col-
ors in the violin plots. Treatments that have significantly higher
phenotypic match scores than the baseline treatment are marked
with blue *, and treatments that have significantly lower pheno-
typic match scores than the baseline treatment are marked with red
*

High mutation rate inhibits the evolution of
regulation in changing environments

In addition to our results on why gene duplications pro-
mote evolvability, our experiments indicate that high mu-
tation rates inhibit the evolution of regulation in changing
environments. In both the simple and complex changing
environments, organisms evolved in the high mutation rate
treatment had significantly lower phenotypic match scores
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than organisms evolved in the baseline treatment, which can
be seen in Figure 3 (two-tailed Mann-Whitney U tests, W
=9958 and 9944, respectively, Bonferroni-adjusted p values
both << 0.0001). A similar result was found in (Lalejini
and Ofria, 2016). Although higher mutation rates increase
genetic variation, most mutations have deleterious effects
(Schlichting and Smith, 2002). Thus, higher mutation rates
may increase the difficulty of maintaining the genetic ma-
chinery necessary for complex regulation.

If elevated mutation rates inhibit the evolution of regula-
tion and all experimental treatments with slip mutation oper-
ators have an effectively higher mutation rate than the base-
line treatment, why do we see this effect only in the high
mutation rate treatment? The rates of insertions and dele-
tions per instruction copied in the high mutation rate treat-
ment were selected to, on average, result in approximately
the same number of mutations per divide as in our treat-
ments with slip mutations. Yet, only organisms evolved in
the high mutation rate treatment had significantly lower phe-
notypic match scores than organisms evolved in the base-
line treatment in the changing environments; all other ex-
perimental treatments were either significantly better or not
significantly different than the baseline treatment.

Why is it that only the high mutation rate treatment inhib-
ited evolvability in the changing environments? One pos-
sibility stems from the higher mutation load imposed on
populations by the high mutation rate treatment. Slip mu-
tations result in large mutational events that affect few off-
spring, whereas the elevated rate of copy mutations in the
high mutation rate treatment results in an increased number
of smaller mutational events spread across many offspring.
Thus, many offspring in the high mutation rate treatment are
subject to the increased rate of deleterious mutations that re-
sults from the higher rates of copy insertions and copy dele-
tions. This is in contrast to treatments with slip mutations
where relatively fewer offspring are subjected to large mu-
tational events, which results in the concentration of delete-
rious mutations in fewer offspring relative to the high mu-
tation rate treatment. Further analysis is needed to confirm
that this is, indeed, the case.

Conclusion

In this work, we investigated both if and how gene dupli-
cations promote evolvability in two qualitatively different
contexts: 1) in a static environment that requires the evo-
lution of unconditionally expressed complex traits, and 2) in
changing environmental conditions that require the evolu-
tion of regulatory mechanisms capable of altering which op-
erations are expressed as a function of current environmen-
tal conditions. Our results show that, indeed, gene duplica-
tions promote evolvability in both static and changing envi-
ronments. We found evidence that the most important as-
pect of gene duplications for promoting evolvability is their
capacity to duplicate existing genetic information within a
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genome. Additionally, we found that the capacity to dupli-
cate multiple types of information is beneficial; mutation op-
erators that duplicated both the content and structure of ge-
netic sequences promoted evolvability more than operators
that duplicated content but not structure.

Broadly speaking, gene duplications can facilitate signif-
icant jumps in a fitness landscape in many different ways.
For example, when genes are duplicated, processes like sub-
functionalization or neofunctionalization may occur, allow-
ing populations to more easily cross fitness valleys and es-
cape local optima. In the domain of evolutionary compu-
tation, the more we understand about why gene duplication
is so important in promoting evolvability in different sce-
narios, the more we can customize our mutation operators
to emphasize those factors. These results suggest that when
designing gene duplication operators for evolutionary com-
putation systems, we should try to maximize the amount of
information the operators are capable of duplicating.

The results presented here motivate several future stud-
ies. Performing deeper analyses of lineages evolved with
gene duplications would allow us to more specifically iden-
tify how much different types of high-level processes are
contributing to evolvability post-duplication event. Can we
identify examples of subfunctionalization or neofunctional-
ization, and if so, can we identify their contributions to pro-
moting the evolution of complex features? Or, would we
find that duplications that are most likely to successfully
sweep a population are those that have the highest infor-
mation content? Answers to these questions will allow us
to better understand the role that gene duplication plays in
natural evolution and could play in computational systems.
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